JSignPdf Quick Start Guide

Josef Cacek

2.3.0

Table of Contents

JSignPdf Introduction
Benefits of digital signatures
License
History
Author
Getting support
Prerequisites
Java
Keystore
Launching
Using JSignPdf - signing PDF files
Simple version
More detailed version
Advanced view
Encryption
Visible signature
TSA - timestamps
Certificate revocation checking
Proxy settings
Using hardware tokens for signing
Advanced application configuration
conf.properties
Java VM options using EXE launchers
Solving problems
Out of memory error
Command line (batch mode)
Program exit codes
Examples
Other command line tools
InstallCert Tool

O© 00 O U1 U1 U1 b W W W N DN DN ==

N NN R R R R e e e e e e
=), O O O Ul Ul R WDN R e

JSignPdf Introduction

JSignPdf is an open-source application that adds digital signatures to PDF documents. It’s written in
Java programming language and it can be launched on the most of current OS. Users can control
the application using simple GUI or command line arguments. Main features:

* supports visible signatures

* can set certification level

 supports PDF encryption with setting rights

* timestamp support

certificate revocation checking (CRL and/or OCSP)

Benefits of digital signatures

Below are some common reasons for applying a digital signature to communications. (source
Wikipedia)

Authentication

Although messages may often include information about the entity sending a message, that
information may not be accurate. Digital signatures can be used to authenticate the source of
messages. When ownership of a digital signature secret key is bound to a specific user, a valid
signature shows that the message was sent by that user. The importance of high confidence in
sender authenticity is especially obvious in a financial context. For example, suppose a bank’s
branch office sends instructions to the central office requesting a change in the balance of an
account. If the central office is not convinced that such a message is truly sent from an authorized
source, acting on such a request could be a grave mistake.

Integrity

In many scenarios, the sender and receiver of a message may require confidence that the message
has not been altered during transmission. Although encryption hides the contents of a message, it
may be possible to change an encrypted message without understanding it. (Some encryption
algorithms, known as nonmalleable ones, prevent this, but others do not.) However, if a message is
digitally signed, any change in the message will invalidate the signature. Furthermore, there is no
efficient way to modify a message and its signature to produce a new message with a valid
signature, because this is still considered to be computationally infeasible by most cryptographic
hash functions

License

JSignPdf is released under LGPL and/or MPL license. It means, it can be freely used for both
personal and commercial use. For details look directly to license files.

History
The project started at the beginning of 2008. It was switched to a maintenance-only mode in 2012.

A greater change comes in 2021, where the project was switched to use the OpenPDF library instead
of the old version of the iText library.

Author

The author of the JSignPdf is Czech developer Josef Cacek. He works in Java since 2000. Some links
to Josef’s projects:

* https://github.com/intoolswetrust/
* https://github.com/kwart/

* https://sourceforge.net/users/kwart/

Getting support

If you don’t find the relevant information in this document or on the JSignPdf web page
(http://jsignpdf.sourceforge.net/) use JSignPdf Google Group to ask the community.

https://groups.google.com/d/jsignpdf/

https://github.com/intoolswetrust/
https://github.com/kwart/
https://sourceforge.net/users/kwart/
http://jsignpdf.sourceforge.net/
https://groups.google.com/d/jsignpdf/

Prerequisites

Java

If you want to use JSignPdf, and you don’t install it on Windows using the installation program, you
will need Java Runtime Environment (JRE) version 8 or newer. If you don’t have it, you can
download it freely from web pages, for instance:

https://www.azul.com/downloads/?package=jre#download-openjdk

Keystore

To sign PDF documents you need a keystore with your private key. The most common keystore
types supported by Java are:

* PKCS#12 — keys stored in .p12 and .pfx files

* PKCS#11 - keys stored usually on hardware modules

* JKS (Java Key Store)

*« WINDOWS-MY - supported only on MS Windows with Java 6 and newer. You can use directly

your certificates imported into your system.

JSignPdf has been also extended to support external keystore types like smart cards, or network
HSMs. The first example is CloudFoxy (https://gitlab.com/cloudfoxy).

https://www.azul.com/downloads/?package=jre#download-openjdk
https://gitlab.com/cloudfoxy

Launching

All platforms (with Java installed) should support the launching of jar file JSignPdfjar. Use the
following command in the directory, where the application is located.

$ java -jar JSignPdf.jar

Using JSignPdf - signing PDF files

Simple version
Fill text fields and press the Sign It button.

Keystore type . [] Advanced view

Qutput PDF file {optional)
Reason (optional)
Location (optional)
Contact {optional)

[visible signature 0 settings

More detailed version

Select Key Store Type

The Keystore means the location where the private keys are located.

* |SignPdf {version 1.3.0

Keystore type

Input PDF file

Qutput PDF file {(optional)
Reason (optional)
Location {optional)

Contact {optional)

el

WINDOWS-MY

[] Advanced view

BCPKCS12
EKS
BEOUNCYCASTLE

[T

(CASEEXACTIKS
JCEKS

FKCS512

PKCS12-3DES-30ES

[visible signature

) Browse ...

c Settings

By default, JSignPdf displays keystore types provided by Java Runtime itself and the Bouncy Castle
cryptographic provider.

JSignPdf has been extended to support remote/external keystore types. The first entry is
“CloudFoxy” (https://gitlab.com/cloudfoxy), which is a REST API for physical smart cards, initially
developed to support eIDAS signatures.

Keystore file and password

If you use PKCS#12 or Java keystore types (JKS, JCEKS), you have to select the file where the keys are
stored and provide the password of this file. Path to the keystore file can be inserted directly by
typing or you can use the Browse button to navigate through the file system with Open File Dialog.

Input and Output PDF files
Input PDF file is an existing PDF file to which should be added digital signature.

Output PDF file is the name of the result PDF file. If the value is not filled, automatically will be used

https://gitlab.com/cloudfoxy

the Input PDF file with additional suffix “_signed” (e.g. input test.pdf will result in test_signed.pdf)

The Input and Output files have to be different!

Reason, location, contact

The reason, location, and contact fields provide additional information about the signature. Filled
values will be stored in the result PDF.

Remember passwords

JSignPdf stores filled information when you are exiting the application, so it’s present when you
run it the next time. Passwords are not stored by default, but you can allow them by selecting
checkbox Remember passwords.

*Even if the password is stored in the encrypted form, we do not recommend storing passwords if
your computer is used by more users!*

Sign It

Button Sign It starts the signing process. It displays a console window and you can see what the
program is doing.

* JSignPdf Output Console

Starting JSignPdf
INFO Checking irput and cutput FOF paths.

INFO Getting key alias

INFO Used key alias: jsignpdfdesc

INFO Loading private key

INFO Getting certificate chain

INFO Opening irput PDF file: C:\Data\invoice.pdf

INFO Creating output FDF file: C:‘\Data\irvoice signed.pdf
INFO Creating signature

INFO Setting certification level

INFO Frocessing (it may tske 2 while) ...

INFO Closing result FDF stream

Finished: 51 11y

Advanced view

If you are a more experienced user or you have to handle encrypted PDFs or you have more keys
stored in your keystore, you can use the Advanced view checkbox to enable additional functionality.

ﬁ JSignPdf (version 1.2.0 [e

Keystore type i v: Advanced view
Keystore file
Keystore password [] Remember passwaords
Key password
Input PDF file
[] Encrypted
Qutput PDF file (optional)
[7] Append signature to the existing ones
Reason (optional)
Location (optional)
Contact {optional)
Certification level Mot certified -
Hash algorithm SHAL -
[T visible signature settings
“* sign 1t
Key alias

When you have more private keys stored in the keystore, you can select which one will be used to
sign the PDF file by filling the Key alias field. Either you can type alias name directly (combo box is
editable) or you can load all names by pressing the Load keys button and then select one from the
drop-down list."’

If you don’t fill the Key alias field the first alias read from keystore will be used.

Key password

Each key in the keystore can be protected with its password. If this password differs from the
password of keystore, fill it in the Key password input field.

Append signature

JSignPdf can work in two signing modes. It replaces existing signatures with the new ones by
default. If you select the Append signature checkbox, the new one will be appended and the old
signatures will stay unchanged. *This option is disabled for encrypted documents.*

Certification level

The JSignPdf application can add a certificate to the signed PDF. There are four levels of
certification as you can see from the screenshot:

= |
=+ JSignPdf (version 1.3.0) (o o]|
Keystore type IKS — Advanced view

Keystore file | | ‘E‘j Browse ...
Keystore password | | [7] Remember passwaords
Key alias | - | @ Load keys
Key password | |
Input PDF file | | \[’ﬂ Browse ...

[] Encrypted
Qutput PDF file (optional) | | 2] Browse ...

[] Append signature to the existing ones

Reason (optional) | |

Location (optional) | |

Contact {optional) | | C@ TSAJOCSP{CRL

Certification level

Hash algorithm

Form filing allowed o Settings

Form filling and annotations allowed
¥ sign It
-

Hash algorithms

You can choose, which hash function will be used for the signature.

_ S—
" JSignPdf (version 1.3.0) [P S)

Keystore type [ﬁ Advanced view
Keystore file | | ’ \[’ﬂ Browse ...]
Keystore password | | [7] Remember passwaords
Key alias | - | @ Load keys
Key password | |
Input PDF file | | \[’ﬂ Browse ...

[Encrypted
Output PDF file {optional) | | \[’ﬂ Browse ...

[] Append signature to the existing ones
Reason (optional) | |
Location (optional) | |
Contact {optional) | | C@ TSAJOCSP{CRL
Certification level [Not certified -]
Hash algorithm

@ Settings

Encryption

PDF Encryption combobox enables additional fields for support of PDF security. By using this you
can either sign secured PDFs (and change the rights and user password) or you can add encryption
to unencrypted PDF during the signing.

Encryption: Passwords

Fill owner and user passwords to set it in secured result PDF. If the input PDF is encrypted, the
Owner password field has to match to owner password of the input PDF.

Encryption: Certificate

Fill the path to a certificate file (*.cer, *.crt, ...) which should be used for the PDF encryption. Only
the user, which has the private key for the certificate will be able to open the file.

Rights

You can set allowed actions in encrypted result PDF by pressing the Rights button. A new modal
window will be displayed and you can set the possible options there.

— ——

Printing

Rights

[Copy [7] Assembly
[E] Al In [7] Screen Readers
[] Modify Annotations [| Madify Contents

Sy 0K

Normal rights are represented by checkboxes. Printing right has 3 levels, so the combo box is used
for it.

Visible signature

Checkbox Visible signature allows you to create a visible field with signature directly in the signed
PDF. If the checkbox is checked, button Settings is enabled and you can configure parameters
(position/texts/images) of visible signature.

* Visible signature settings X
Fosition ['A Preview & Select

Page 1 1-1

Lower Left X 0.0 0.0 - 595.0
Lower left ¥ 0.0 0.0-842.0

Upper right X 100.0

Upper right ¥ 100.0
Fettings

Display Desaription anly - Acrobat & layer mode
Signature text -
Default

Signature font size 10.0

Status text Default

Image ﬁ Browse ...
Background image scale -1.0

Read ToolTip texts, which are assigned to some input fields. You will get information, how to fill
them correctly.

Page

Page number (counted from 1) to which the signature will be added.

Signature corners

Next four inputs Lower Left (X, Y) and Upper Right (X, Y) define the position of the signature on the
page. You can fill in float numbers (with decimal places) as input. If you have already selected input
PDF in the main window you will see a possible range for X and Y values on the right side of Lower
Left (X, Y) input fields.

The position of a signature on the page is bounded by the lower-left corner and upper-right corner.
The zero ([0,0]) position on the page is in the left bottom corner.

Preview / Select button

The PDF preview is supported from version 1.0.0. The borders of the visible signature are displayed
on the chosen page. You can select a new position by pressing the left mouse button at the start
corner, moving to the end corner, and releasing the mouse.

B3
ié_oﬁpreuiewfseled —t—

S

Proper Rates

Are Critical for Financial Health \\

A
."I\\ / \ / A
[V~ \

By Mark Kemg-Rye - 17 s Esoar Ay

“With most rate
SEACTIArES, Cansumens”
monthly charges vary

ocovding o use.
Systems start with a
Lasic price far madest
water consumptian and
charge extra for addi.
thang! wse. The difference
in the stnactures fs in
e systems price oddi-
tlonal consumptian. *

Display

In combo box Display you can set which fields will be generated to visible signature.

Acrobat 6 layers

The checkbox _Acrobat 6 layer mode _(checked by default) allows you to control which signature
layers will be added to the signed document. Acrobat 6.0 and higher recommends that only layers
n2 and n4 be present. If the checkbox is not selected then all layers will be created.

Texts and Images

Signature Text, Status Text, Image, and Background Image inputs define the content of fields in a
visible signature. Signature Font Size is used for setting the size of Signature Text, it should contain a
positive decimal number.

Background image scale defines the size of a background image. Any negative number means the
best-fit algorithm will be used. Zero value means to stretch, which fills the whole field - it doesn’t
keep the image ratio. A positive value means the multiplicator of the original size.

10

Supported file formats for the Image, and Background Image are GIF, JPEG, JPEG2000, PNG, WMF,
BMP, and TIFF.

TSA - timestamps

To add timestamp into signature you will need some timestamping authority (TSA). Fill server
address into TSA URL field and if the server requires authentication choose the authentication type
and fill either TSA User and TSA Password fields or path to the certificate’s private key (it has to be
PKCS#12 keystore) and the password. You can also set TSA Policy OID, which will be sent to the TSA
server in the request, but probably you will not need to do so and the server uses the right policy by
itself.

5 TSA & certificate rem_ =5
I [Use timestamp server
TSA URL
TSA user
TSA password
TSA Policy (OID)
[] Enable oCsP
default OCSP server URL
[Enable CRL
Proxy settings
Type DIRECT -
Proxy host/port 305

Certificate revocation checking

JSignPdf supports two standard ways of certificate revocation checking - CRL and OCSP. Most of the
X.509 certificates support CRL, but it has some disadvantages (for instance the size of the list and
possibly outdated information). The second — OCSP solves the mentioned issues, but not all
Certification Authorities (CA) support this protocol.

CRL

RFC 3280, Internet X.509 Public Key Infrastructure, Certificate and Certificate Revocation List (CRL)
Profile.

Wikipedia says: In the operation of some cryptosystems, usually public key infrastructures (PKIs), a
certificate revocation list (CRL) is a list of certificates (or more specifically, a list of serial numbers
for certificates) that have been revoked or are no longer valid, and therefore should not be relied
upon.

Such a list will be downloaded from CA and stored in PDF during the signing process.
OCSP

RFC 2560, X.509 Internet PKI Online Certificate Status Protocol-OCSP.

Wikipedia says: The Online Certificate Status Protocol (OCSP) is an Internet protocol used for
obtaining the revocation status of an X.509 digital certificate. It is described in RFC 2560 and is on

11

the Internet standards track. It was created as an alternative to certificate revocation lists (CRL),
specifically addressing certain problems associated with using CRLs in public key infrastructure
(PKI). Messages communicated via OCSP are encoded in ASN.1 and are usually communicated over
HTTP. The "request/response” nature of these messages leads to OCSP servers being termed OCSP
responders.

If OCSP is enabled in JSignPdf and the protocol is supported for the certificate, the OCSP request
will be created and the response will be stored in a signed PDF. The URL of the OCSP server is
retrieved from the certificate. If the OCSP part is not found in the signing certificate, the value from
the default OCSP server URL field will be used.

Proxy settings

If some “online” feature (TSA, CRL, OCSP) is enabled and]JSignPdf runs behind a firewall, you can
set the proxy, which will be used for all internet connections. Proxy type DIRECT means no proxy
will be used.

[1] Only the private keys, which are valid (at the time of the signing) are displayed in the list. If the certificate supports the Key
Usage extension, the private key will only be displayed if it is meant for signing.

12

Using hardware tokens for signing

Steps to sign documents using hardware tokens:

1. Install PKCS#11 driver for your token. Check the vendor’s documentation and install a proper
driver for your system;

2. Create a configuration file pkcs11.cfg somewhere on your system. It will be used to configure a
Java SunPKCS11 security provider. (see https://docs.oracle.com/javase/8/docs/technotes/guides/
security/p11guide.html)

The content depends on your driver, you can try to start with a simple 2 lines:

name=Test
library=/path/to/your/PKCSDriver.so

1. Try to run JSignPdf with PKCS11 debug enabled:

java -Djava.security.debug=pkcs1lkeystore \
-Djava.security.debug=sunpkcs11 \
-jar JSignPdf.jar

If it doesn’t work, try to add parameter slot or slotListIndex into pkcs11.cfg file, e.g.:

name=Test
library=/path/to/your/PKCSDriver.so
slot=2

or

name=Test
library=/path/to/your/PKCSDriver.so
slotListIndex=1

Value used for slot or slotListIndex depends on how many certificates you have installed.

If the PKCS11 keystore type works properly in the GUI and you can use the certificate on your
token, you’re ready to use it also in the batch mode.

java -jar JSignPdf.jar -kst PKCS11 -ksp 123456 document.pdf

13

https://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html

Advanced application configuration

Some advanced options are not controlled from GUI or the command line. They can be only set
directly in the appropriate configuration file.

conf.properties

The property file conf/conf.properties contain several option groups:

» visible signature font settings
» control the certificate checks
« PKCS#11 support

* enable more strict SSL handling

Java VM options using EXE launchers

If the Java VM properties have to be changed (e.g. maximum memory allowed) and the EXE
wrapper is used, you can edit the appropriate .l4j.ini file (e.g. JSignPdf.14j.ini).

The arguments should be separated with spaces or newlines, environment variable expansion is
supported, for example:

-Dswing.aatext=true
-Dsomevar="%SOMEVAR%"
-Xms32m

-Xmx512m

14

Solving problems

Out of memory error

If you will see OutOfMemoryError in the program console, you need to allow java to use more
memory.

Add -Xmzx<size> switch to your java. Following example allows java to use 512MB (heap size).

$ java -Xmx512m -jar JSignPdf.jar

15

Command line (batch mode)

16

usage: java -jar JSignPdf.jar [filel.pdf [file2.pdf ...]] [-a] [--bg-path
<file>] [--bg-scale <scale>] [-c <contact>] [-cl <level>] [--crl] [-d
<path>] [--disable-acrobat6-layer-mode] [--disable-assembly]
[--disable-copy] [--disable-fill] [--disable-modify-annotations]
[--disable-modify-content] [--disable-screen-readers] [-e] [-ec <file>]
[-fs <size>] [-h] [-ha <algorithm>] [--img-path <file>] [-ka <alias>]
[-ki <index>] [-kp <password>] [-ksf <file>] [-ksp <password>] [-kst
<type>] [-1 <location>] [--12-text <text>] [--14-text <text>] [-1k]
[-1kt] [-11x <position>] [-1ly <position>] [-1p] [-1pf <file>] [--ocsp]
[--ocsp-server-url <responderUr1l>] [-op <prefix>] [-opwd <password>] [-os
<suffix>] [-pe <mode>] [-pg <pageNumber>] [-pr <right>] [--proxy-host
<hostname>] [--proxy-port <port>] [--proxy-type <type>] [-q] [-r
<reason>] [--render-mode <mode>] [-ta <method>] [-ts <URL>]
[--tsa-policy-oid <policy0ID>] [-tscf <file>] [-tscp <password>] [-tsct
<ks-type>] [-tsh <algorithm>] [-tsp <password>] [-tsu <username>] [-upwd
<password>] [-urx <position>] [-ury <position>] [-v] [-V]

JSignpdf is an application designed to digitally sign PDF documents. If you

start the program without any command line argument, the GUI will be started,

otherwise you can use]SignPdf in command line batch mode.

-3, --append add signature to existing ones. By
default are existing signatures
replaced by the new one.

--bg-path <file> background image path for visible
signatures
--bg-scale <scale> background image scale for visible

signatures. Insert positive value to
multiply image size with the value.
Insert zero value to fill whole
background with it (stretch). Insert
negative value to best fit resize.

-c,--contact <contact> signer's contact details (a signature
field)
-cl,--certification-level <level> level of certification. Default value

is NOT_CERTIFIED. Available values are
NOT_CERTIFIED,
CERTIFIED_NO_CHANGES_ALLOWED,
CERTIFIED_FORM_FILLING,
CERTIFIED_FORM_FILLING_AND_ANNOTATIONS
--crl enable CRL certificate validation
-d,--out-directory <path> folder in which the signed documents
will be stored. Default value is
current folder.
--disable-acrobatb-layer-mode disables the Acrobat 6 layer mode i.e.
all signature layers will be created.
Acrobat 6.0 and higher recommends that
only layer n2 and n4 be present.
--disable-assembly deny assembly in encrypted documents

--disable-copy
--disable-fill
--disable-modify-annotations
--disable-modify-content
--disable-screen-readers

-e,--encrypted

-ec,--encryption-certificate <file>

-fs,--font-size <size>

-h,--help
-ha, --hash-algorithm <algorithm>

--img-path <file>
-ka,--key-alias <alias>

-ki,--key-index <index>

-kp, --key-password <password>

-ksf,--keystore-file <file>

-ksp, --keystore-password <password>
-kst,--keystore-type <type>

-1,--location <location>

--12-text <text>

deny copy in encrypted documents

deny fill encrypted documents

deny modify annotations in encrypted
documents

deny modify content in encrypted
documents

deny screen readers in encrypted
documents

This property is deprecated, use
-encryption PASSWORD instead!

path to the certificate file, which is
used to encrypt output PDF in case of
-encryption CERTIFICATE

font size for visible signature text,
default value is 10.0

prints this help screen

hash algorithm used for signature.
Default value is SHA1. Available values
are SHA1, SHA256, SHA384, SHA512,
RIPEMD160

image path for visible signature

name (alias) of the key, which should
be used for signing the document. If
this option is not given, the first key
in the keystore is used. (List the key
aliases using -1k)

zero based index of the key, which
should be used for signing the
document. If neither this option nor
alias is given, the first key (index=0)
in the keystore is used. (List the key
aliases using -1k). This option has
lower priority than alias.

password of the key in keystore. In
most cases you don't need to set this
option - only keystore is protected by
a password, but just in case :)

sets KeyStore file - as the value use
the path on which is file with private
key(s) located (.p12, .pfx, .jks, ...).
Some keystores haven't keys stored in a
file (e.g. windows keystore -
WINDOWS-MY), then don't use this
option.

password to KeyStore

sets KeyStore type (you can list
possible values for this option -1kt
argument)

location of a signatue (e.g. Washington
DC). Empty by default.

signature text, you can also use

17

18

--14-text <text>
-1k, --list-keys
-1kt,--1list-keystore-types
-11x <position>
-11y <position>

-1p,--load-properties

-1pf,--load-properties-file <file>

--0csp
--ocsp-server-url <responderUrl>

-op,--out-prefix <prefix>
-opwd, --owner-password <password>

-0S,--out-suffix <suffix>

-pe,--encryption <mode>

-pg,--page <pageNumber>

-pr,--print-right <right>

--proxy-host <hostname>
--proxy-port <port>

--proxy-type <type>

-q,--quiet

placeholders for signature properties
(${signer}, ${timestamp}, ${location},
${reason}, ${contact})

status text

lists keys in choosen keystore

lists keystore types, which can be used
as values -kst option

lower left corner postion on X-axe of a
visible signature

lower left corner postion on Y-axe of a
visible signature

Loads properties from a default file
(created by GUI application).

Loads properties from the given file.
The file can be create by copying the
default property file .JSignPdf created
by the GUI in the user home directory.
enable OCSP certificate validation
default OCSP server URL, which will be
used in case the signing certificate
doesn't contain this information
prefix for signed file. Default value
is empty prefix.

owner password for encrypted documents
(used when -e option is given)

suffix for signed filename. Default
value is "_signed". (e.g. sign process
on file mydocument.pdf will create new
file mydocument_signed.pdf)

encryption mode for the output PDF
Default value is NONE. Possible values
are NONE, PASSWORD, CERTIFICATE. Use
togethter with -upwd and -opwd in case
of PASSWORD mode, and -ec in case of
CERTIFICATE

page with visible signature. Default
value is 1 (first page). If the
provided page number is out of bounds,
then the last page is used.

printing rights. Used for encrypted
documents. Default value is
ALLOW_PRINTING. Available values are
DISALLOW_PRINTING,
ALLOW_DEGRADED_PRINTING, ALLOW_PRINTING
hostname or IP address of proxy server
port of proxy server, default value is
80

proxy type for internet connections.
Default value is DIRECT. Possible
values are DIRECT, HTTP, SOCKS

quiet mode - without info messages

-r,--reason <reason>
--render-mode <mode>

-ta,--tsa-authentication <method>

-ts,--tsa-server-url <URL>

--tsa-policy-oid <policy0ID>

-tscf,--tsa-cert-file <file>

-tscp,--tsa-cert-password <password>
-tsct,--tsa-cert-file-type <ks-type>

-tsh, --tsa-hash-algorithm <algorithm>
-tsp,--tsa-password <password>
-tsu,--tsa-user <username>

-upwd, --user-password <password>
-urx <position>
-ury <position>

-v,--version
-V,--visible-signature

Program exit codes

during process

reason of signature. Empty by default.
render mode for visible signatures.
Default value is DESCRIPTION_ONLY.
Possible values are DESCRIPTION ONLY,
GRAPHIC_AND_DESCRIPTION,

SIGNAME _AND_DESCRIPTION

authentication method used when
contacting TSA server. Default value is
NONE. Possible values are NONE,
PASSWORD, CERTIFICATE

address of timestamping server (TSA).
If you use this argument, the timestamp
will be included to signature. (For
testing purposes you can try following
URL
http://dse200.ncipher.com/TSS/HttpTspSe
rver)

TSA policy OID which should be set to
timestamp request.

path to keystore file, which contains
private key used to authentication
against TSA server, when CERTIFICATE
authentication method is used

password used to open PKCS#12 file (see
-tscf option) with a private key
keystore type for TSA CERTIFICATE
authentication - the default is PK(CS12
hash algorithm used to in query to
time-stamping server (TSA); the default
is SHA-1

TSA user password. Use this switch if
you use timestamping (-ts) and TSA
server requires authentication.

TSA user name. Use this switch if you
use timestamping (-ts) and TSA server
requires authentication.

user password for encrypted documents
(used when -e option 1is given)

upper right corner postion on X-axe of
a visible signature

upper right corner postion on Y-axe of
a visible signature

shows the application version

enables visible signature

19

Code Meaning

0 program finished without errors

1 command line is in a wrong format

2 no operation requested - e.g. no file for signing
provided

3 signing of some, but not all, files failed

4 signing of all files failed

Examples

20

$ java -jar JSignPdf.jar -kst WINDOWS-MY mydocument.pdf

-> creates copy of mydocument.pdf with name mydocument_signed.pdf, which is
digitally signed with the first certificate found in default windows certificate
store

$ java -jar JSignPdf.jar -kst PKCS12 -ksf my_certificate.pfx -ksp
myPrivateKeystorePassword -ka cert23 -pe PASSWORD -opwd xxx123 -upwd 123xxx -pr
DISALLOW_PRINTING mydocument.pdf

-> creates signed and encrypted file mydocument_signed.pdf, printing of the new
file is not allowed. For signature is used key with alias cert23 from the file
my_certificate.pfx

$ java -jar JSignPdf.jar -1kt

-> lists keystore types

$ java -jar JSignPdf.jar -kst PKCS12 -ksf my_certificate.pfx -ksp
myVeryPrivatePassword -1k -q

-> list names (aliases) of keys stored in my_certificate.pfx file using the
password for keystore. Quiet mode is enabled so no debug info is printed.

Other command line tools

InstallCert Tool

In some cases, when the JSignPdf connects to server through HTTPS protocol (e.g. to TSA server for

timestamping), it can fail with console message “SSLHandshakeException”. It’s caused because Java

uses keystore (named “cacerts”) with preinstalled well-known certification authorities root

certificates and if the HTTPS server doesn’t have certificate signed by a such registered authority,

the connection is refused.

If you trust the server, which was refused, you can add its certificate (or some parent certificate in
the certificate chain) to the Java cacerts keystore. JSignPdf comes with command line utility for it —

InstallCert.

Usage:
$java -jar InstallCert.jar
or

$java -jar InstallCert.jar hostname[:port] [cacertPwd]

If you don’t provide a hostname argument, you will be asked for it.

@ InstallCert Tool HEH

tallCert.java:218>

at sun.security.ssl.ClientHandshaker.serverCertificate{ClientHandshaker.
ljava:1888>

... B more
iCauzed by: sun.security.provider.certpath.SunCertPathBuilderException: unable to
find valid ce ication path to requested target

urity.provider.certpath.SunCertPathBuilder.engineBuild{SunCert
26>

at s
PathBuilder.
at j curity.cert.CertPathBuilder.build{CertPathBuilder. java:255>
at sun.security.validator.PKIEValidator.doBuild{PKIBValidator. java:3B6>
. 14 more

Server sent 2 certificateds>:

1 Subject 0=My—Company, CH=my—server.my—company.example
Issuer O=my—company.example. CN=My—Company Demo CA
shal 58 bc eb 63 3c 5b 12 8% eb 7a 99 B1 dd 29 cf e8 bf dB 78 de
md5 £f? 1d Bd e3 6a he 88 5a 26 2c 8c ?d 39 66 52 eb

Subject O=my—company.example. CN=My—Company Demo CA

Issuer O=my—company.example. CN=My—Company Demo CA

shal ca 82 8f 3a 7e bb 4e 8f 4c a2 e? de ?d 52 17 1e b2 88 1b 66
md5 11 9c e6b c5 £8 he 77 7c 8f c8 d7 S5bh dé6 c4 78 6b

Enter certificate to add to trusted keustore or ‘g’ to guit [1]:

The certificate chain will be displayed and you can choose which one will be imported.

21

	JSignPdf Quick Start Guide
	Table of Contents
	JSignPdf Introduction
	Benefits of digital signatures
	License
	History
	Author
	Getting support

	Prerequisites
	Java
	Keystore

	Launching
	Using JSignPdf – signing PDF files
	Simple version
	More detailed version
	Advanced view
	Encryption
	Visible signature
	TSA – timestamps
	Certificate revocation checking
	Proxy settings

	Using hardware tokens for signing
	Advanced application configuration
	conf.properties
	Java VM options using EXE launchers

	Solving problems
	Out of memory error

	Command line (batch mode)
	Program exit codes
	Examples

	Other command line tools
	InstallCert Tool

